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A THEORY OF UNSTAGGERED AIRFOIL CASCADES IN COMPRESSIBLE FLOW

By RoBerT A. SprrRR and H. JULIAN ALLEN

SUMMARY

By use of the methods of thin airfoil theory, which include
effects of compressibility, relations are developed which permit
the rapid determination of the pressure distribution over an
unstaggered cascade of airfoils of a given profile, and the deter-
mination of the profile shape necessary to yield a given pressure
distribution for small chord/gap rativs. For incompressible
flow the results of the theory are compared with arailable
examples obiained by the more exact method of conformal trans-
formation. Although the theory is dereloped for small chordf
gap ratios, these comparisons show that it may be extended to
chordfgap ratios of order unity, at least for low-speed flows.
(Choking of caseades, a phenomenon of particular imporiance in
compressor design, is considered.

INTRODUCTION

The wider use of gas turbines and other devices employing
axial-flow compressors has increased the need for com-
pressors with a high pressure rise per stage. In order to
achieve this purpose it is necessary to use high velocity
flows, thus increasing the possibility of losses through com-
pression shock. A method is therefore desirable which will
permit the design of compressor blades which have high
eritical compressibility speeds. This result can be accom-
plished if a cascade of airfoils representing the flow can be de-
signed to give a desirable airfoil-section pressure distribution.

This report attacks a portion of the problem by finding the
relation between the profile shape and pressure distribution
over airfoils arranged in an unstaggered cascade through the
use of the approximate methods of thin airfoil theory origi-
nally presented by Glauert in reference 1 and further de-
veloped by the NACA in reference 2. The flow over an
airfoil in cascade is related to that over a single airfoil in a
free stream. The problem of finding the pressure distribu-
tion over an airfoil in cascade or the shape of an airfoil in
cascade to give a required pressure distribution then reduces
to the analogous problem for a single airfoil, which can be
solved by known methods.

The analysis involves the assumption that the gap between
airfoils is large compared to the chord length. In particular,
expressions relating the characteristies of a cascade airfoil to
those of a free airfoil are expanded In a power series in ¢/g,
where ¢ 18 the chord and ¢ the perpendicular distance between
airfoil chord lines in the cascade, and powers of ¢/g higher

than the second are neglected. Definitions of the symbols
used are found in Appendix A.

THEORY

Consider an infinite unstaggered cascade of identical two-
dimensional airfoils, as represented in figure 1. The config-
uration is specified by the chord/gap ratio ¢/g, the camber-
line shape and thickness distribution of the individual
girfoils. For an individual airfoil, the incident velocity is
17 with a corresponding density of p and angle of atiack «'.

bC

FiotrE 1.—Schematic diagram of cascade.

The pressure distribution on a typical cascade airfoil will
be compared with that which would be obtained over a
single airfoil of the same shape in a stream of velocity V and
density p. The angle of attack « of the single airfoil will not,

in general, be the same as the angle of attack o« of the
airfoil in cascade, and an expression relating the two angles
will be given. In the analysis to follow, primes will be used

to designate properties of the cascade airfoil.

AERODYNAMIC CHARACTERISTICS OF A CASCADE AIRFOIL OF i GIVEN
PROFILE SHAPE
Effect of camber.—The chordwise lift distribution for the
free airfoil is given by the Kutta-Joukowski relation

dL dar
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where L is lift per unit span, I' is the vorticity per unit span,
and z is the chordwise distance from the leading edge to the
to the point in question. The lift-distribution coefficient P
is then defined as

2
= (2)

In Appendix B, it is shown that the stream velocity at
the cascade airfoil is uniform so that the lift distribution
for the cascade airfoil may be expressed as

dL’ dr’
romladr ®)

and the lift-distribution coeflicient of the cascade airfoil
referred to the dynamic pressure ¢ is

1dL 2 dr’
Pr= Tqde Vdx )
From equations (2) and (4),
2 /dl' dT
_P=V E_d_r> (%)

It is now desirable to express equation (5) in a more con-
venient form. It is assumed that the vorticity distributions
of the free and cascade airfoils, respectively, may be rep-
resented by the following series (references 1 and 2):

%E—QV<AO cot —6—} ZA sin na)
dr" (6)
—2V <A0 cot —(H—ZA,z sin na)l
The new parameter ¢ is related to = by the equation
=2 (1—cos 6) (7)
=5 cos

Equation (5) then becomes
P*—P=4 l:(AO’ — 4g) cot 5 0-+33(A,/—4,) sin nf)] (8)
=1

The coefficients in equation (8) will now be evaluated by
considering the conditions of flow at the airfoil boundaries.
Let v and ¢* be the vertical components of velocity induced,
respectively, by the free airfoil and a particular cascade
airfoil, and let Av be the vertical component of velocity
induced by the other airfoils of the cascade. For small
angles of attack, in order that the flow be tangent at the
surfaces, the slope dy./dz of the airfoil camber line (which is
the same for both free and cascade airfoils) must be given
by the following relations:

ooty

(9)
aYe_ Ay
P +V+V

Appendix B gives the vertical components of veloeity
induced by the vorticity and source-sink distributions which
represent the airfoils of a cascade. For simplicity, the
following symbols are used:

2 A2
a=”—8§ - —  (B1D)
A=+/1—A1* (B4)

where AL is the Mach number of the undisturbed stream.
The velocity components calculated in Appendix B are

T’f,:)\ <-—A0+iAn €os n(:*) (B5)
n=1

.’T’]=)\ <__A0’+ SOA, cos n@) (B6)
n=1

and neglecting terms involving ¢ to the second and higher
powers

=27 (4 + 24 — 24/ +AY) cos 8] (B25)

RAREEESY

Substituting these relations in equations (9), there is
obtained

d_yC__a_|_)\< Ao—l—ZA cos nB)

-~

(ffyc ’+>\< Ay —}-ZA,, cosn@) L (10)

-—z% [(Ao’—{-—Q-Ag’)-—(?AO’—{-AI’) cos 6]

4

Since equations (10) are equal trigonometric series, the
coefficients of cos n8 can be equated:

-

a—NAy=a/—NAS—2 % (47 +5AY)
AMi=NA 425 2 (24, + Ay
- (11)
A2=A2I
AnzAn/(’nﬁl) %

From the first of equations (11), it is seen that the quan-
tity (do'—A;) depends on the angle of attack « of the free
airfoil. This angle may be arbitrarily defined so that

Ay’ — Ag=0 (12)

Combining equations (11) and (12), the following relations
are obtained:

A — Ay=0 3
A —Ai==2 5 @A+ A

Ay — A, =0 r (13)
A/ —A=0 (1) J

and

a’—a=2%<z§o’+% Ag’) (14)
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Making use of equations (13), equation (14) may also be
written as follows:

; 1
24 —a=2§<4~10—|—§ Ag) (15)
From equations (8) and (13), there is obtained
P*—P=—38 7%‘ (24, +A) sin @ (16)

Changing to the unprimed coefficients with the use of equa-
tions (13), and neglecting terms in ¢2, the expression becomes

P*—P=—8 3 (2ds+ ;) sin 0 (17)

It should not be interpreted from equations (16) and (17)
that ;" and 4; are equal. Equation (17) is the result of
dropping terms in ¢* and not of equating A, and A;. The
difference between A,” and 4, to the order ¢ is still given
by equations (13).

The section lift coefficient for the free airfoil is

c;=j; ' Pd (%) (18)

Substituting from equations (2), (6), and (7) and performing
the integration, one obtains

C;:’F(QAQ—E—Al) (19)

Similarly, the quarter-chord moment coefficient is

ra= [P (175) ()= o)

From equations (19) and (20) it follows that
2~‘10‘}‘A1=C—l
T

A+ Az—— <Ct e 4Cmc )

With use of equations (21), equations (15) and (17) then
become

(21)

a’-—OL:% <cz+ 4‘3%/4) (22)
and
P¥_P=— 8‘;\2[ sin @ (23)

=t PG e

Effect of thickness.—From Appendix B, the horizontal
velocity at an airfoil in cascade is greater than that at a
single airfoil by the amount Au, which is given by the relation

Au  Ac

V=3 (B24)

The quantity A is a function of airfoil thickness given by
equation (B20) and tabulated for various airfoils in table I,
which has been taken from reference 3.

The increment of velocity given by equation (B24) can be
added to the velocity of the undisturbed stream V; to give the
true incident velocity V:

V="7,+Au (25)
From equations (B24) and (25),

Vi A
T=1-31 (26)

The density p; far ahead of the cascade is given by the
following equation, derived for isentropic flow:

m=p{ 0 o—l:lly—l

where v is the ratio of specific heat at constant pressure to
that at constant volume. Using the binomial expansion and
neglecting terms containing powers of [(1/V)?*—1] higher
than the-first, there is obtained to the order of ¢

Acdi? -
F_l—r 6)\3 (21}

The ratio of the dynamic pressure ¢ at the center of pres-
sure to the dynamic pressure ¢; far ahead of the airfoil is then
found to be

A
9_14g4%

: 3 (28)

where

1[2

(29)

The lift-distribution coefficient P’ referred to the dynamic
pressure ¢; is given by

P'=gi!1 P+ (30)

The cascade section lift coefficient is

c;’=J; ‘P (%)=— + (f) (31)

Substituting equations (24) and (28} in equation (31) and
performing the integration, there is obtained, neglecting

terms in ¢°,
EA
e/ —c=— tTCZ<1"" ) (32)

Equation (32) gives the relation between the lift coefficient
of a cascade airfoil at angle of attack ¢’ and that of a single
airfoil at angle of attack @. The relation between «” and « is
given by equation (22). '

The Mach number A1’ must now be related to the Mach
number 1f for the corresponding single airfoil. The velocity
of sound @, is related to a by

/ 5,

a1=‘\, T

(33)
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For isentropic flow

ree (5 1)

which becomes, using equation (26)
7= T[1+<~f—1) Ve A"] (34)

Hence equation (33) becomes, to the order of ¢

a1=<1 +1 are *’“’) (35)
and so
. ,_K |
M= <V L ar

Using equations (26) and (35) then

M’=<1 —‘-;2’ #) M (36)

where

“=1+<7:1>M2 (37)
Determination of pressure coefficient.—The following co-
efficlents are useful in expressing the pressure on_an airfoil
surface:
Sz___z’f—f?z; Pzzpl——p . (38)
a q

where 9, is the local static pressure on the surface of the air-
foil, and H, p, and ¢ are, respectively, the total head, static
pressure, and dynamic pressure of the undisturbed stream.
The variation of H with Mach number, assuming that the
ratio of specific heats is 1.4, is glven (refelence 4) by the
equations

H=p+q(1+n) }
ﬂﬁ MY M (39)
Ln=14"1735 T 1600
From these equations,
=1+9—P, (40)

A graph of 5 as a function of Mach number is given in
figure 2. The subscript [ in equations (38) and (40) will be
replaced by U, L, or f to denote, respectively, the upper
aud lower surfaces of an airfeil and the surface of its sym-
metrical base profile.

According to reference 5, the velocity V', along the base
profile of a single airfoil is given for incompressible flow by
the expression

- I vy - S N s
where the pressure coefficients are referred to ¢. That is,

p _Pv=P. p _Pr=P. p _Pr=P
7 q g g

and p is the static pressure of the stream corresponding to g.
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FIGURE 2.—Compressibility factor, », as a function of Mach number.

The velocity 17/ along the base profile of the airfoil in a
cascade in terms of 17is simply

17/_ 7/
V=V
so that
VI—PF=+1—P, (42)

since the cascade base-profile pressure coeflicient £/* is
referred to the dynamie pressure ¢ and to the static pressure
p rather than to the corresponding quantities in the un-
disturbed stream. Analysis (reference 3) shows that cqua-
tion (42) holds also for compressible flow, to an approxima-
tion of the same order of magnitude as others already made.

The upper- and lower-surface pressure cocfficients referred
to ¢ are from reference 5.

1 (43)
(1-?,*—Z P*)
Pi=1—
2 [—P

Although equations (43) were derived for incompressible
flow, it can be shown that they are applicable in the case of
flow in a compressible stream.
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The coefficients Py* and P.* can be converted into the
coeficients Py’ and P’ referred to ¢ (the dynamiec pressure
in the undisturbed stream) and the corresponding statice
pressure by means of the following equations, which are
based on equations (28) and (40):

SU =1+ n— PU
SL =1_7]'—PL'
S’ =L 5,%=s *<1+;&°’5
\ (44)
SL—QSL*—SL <1+9‘”‘§
149" —Sy*
PL_]- T]—SL

J

when 7’ is the value corresponding to 3/’ given by equation
(36).

DETERMINATION OF PRESSURE DISTRIBUTION FOR A GIVEN PROFILE
SHAPE IN CASCADE

A method can now be outlined for finding the pressure
distribution over an airfoil of given profile in an unstaggered
cascade. It will be assumed at the outset that the Mach
number M’ of the approaching air is known and that the
desired lift coefficient ¢, of each of the cascade airfoils is
given.

1. The Mach number of the corresponding free airfoil, A7,
is determined from equation (36) to a first order in ¢ as

11_(1 +32 y) AYZ 45)
wherein
=% (%) (B11)
A=+1—@1)? (46)
p=14+75 @ry (47)

and A may be obtained from table T or from equation (B20).
2, The lift coefficient of the corresponding free airfoil,
¢;, is found from equation (32) by neglecting second-order

terms In ¢ as
c,:cz’[l—r)\2 1——.&):] (48)

wherein ¢ is given by equation (29).

For the given airfoil the quarter-chord pitching moment
€m.y and the angle of attack « corresponding to the lift
coefficient ¢; will be known and the angle of attack for the
airfoil in cascade &’ (degrees) can be found from

o' =a-+57.3 3 (crt4en,,) (22)

3. P==P,;— Py for compressible flow at the Mach number
Af is found for the single airfoil at the lift coefficient e,.
Preferably an experimental pressure distribution at the
sppropriate Mach number and at approximately the same

Reynolds number should be used but a theoretical distribu-

tion (e. g., by references 2, 6, 7, or 8) modified by the Glauert-

Prandtl or Karman-Tsien rule (references 9 and 10) is

satisfactory. :
4. P*is found from equation (24).

Vi(-9)

is ealculated from the free airfoil pressure

P*:P_IGG'CE

5> _\rl —'P.{*

distribution from equations (41) and (42)

I 7 ‘fl—Pf'l‘ '[1_P
VI—PfF=1—P,=2 L‘;’\ 2

]

(49)

6. (1—P,*) and P* are combined to give (1—Py*) and

(1—P.*) from equations (43)

(1~ P*+3P*
I=Py*=——_"px
S (43)
(1— P —3P¥)
1— Py =
‘ 1—pPx

7. The cascade pressure coefficients Py’ and P, are then
found by means of equations (44):

SU*ZI_PU*+77 h

SL*:l—PL*‘IFﬂ

SU’=<1+2A"‘§) Sy

S, < -‘AGE) Sy *

PU,=1_SU’+H’

s (44)

=1”‘SL,+7’1[ J

where 7 and %’ corresponding to 1 and 1{’, respectively, are
found from figure 2.

DETERMINATION OF PROFILE SHAPE FROM A GIVEN PRESSURE
DISTRIBUTION IN CASCADE

The procedure for obtaining the profile shape for a given
pressure distribution in cascade involves a process which
is essentially the reverse of that just outlined. First the
required pressure distribution is drawn. The initial choice
must be made skillfully with reliance on experimental pres-
sure distributions so that the distribution chosen shall
correspond or nearly correspond to that obtainable with a
real airfoil. From the chosen distribution the coefficients
¢/’ and €m,,’ are determined by graphical or numerical
integration and the pressure coefficients Py’ and P’ are
read off at selected points. The method then consists of
the following steps:

1. The Mach number .M/ is determined from

:11:(1 i g) ar (45)
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2. Py* and P,* are found by applying equations (44) in
reverse order, neglecting terms involving ¢ to the second and
higher powers.

U’=1+n,_PU, )
SL,=1+77"_'PL,
Sy ( Ao’f;’) Sy’ L
(50)

S, _(1 AaE) S,/
PU 1‘1'77 SU
¥=1+4+9—08

where 7" and g correspond to M’ and AL, (See fig. 2.)
3. (1—Py) is found by means of the following equations,
which are readily obtained from equations (49):

[1—Py* 41 —P.* .
Y 7] 5 L (49)

p]

N1—P=+1—PF=

The base profile should now be checked to see if it satisfles
the closing condition given in reference 2. If the assumed
pressure distribution does not correspond to a closed shape,
it must be modified so that it does. (See reference 2.)
4. The single-airfoil lift-distribution coefficient P is found
from the relations
P#*=P *—Py* (1)

16crc; \/ <1__) (52)

5. The final upper- and lower-pressure coefficients are
calculated by means of the following equations from equa-

P=P*+

tion (43):
(1—P,+ P)
~—=p, 53
(1—13,——13)
—i=p,

6. The angle of attack of the single airfoil is then given
in degrees by

a=a'—57.3 7% (Cz"{“icmm') (54)

which is a modification of equation (22).

7. The problem of finding a profile shape which will have
a given pressure distribution in cascade has now been re-
duced to the analogous problem for a single airfoil. It Is
now possible to calculate the corresponding incompressible-
flow pressure distribution by the method of reference 10, or
simply by multiplying Py and P, by +V1—232. An airfoil
shape can be designed to give this pressure distribution by
the method of reference 2. In the application of this
method, it is generally necessary to make some changes in
the pressure distribution, as previously noted, in order to
make it correspond io a possible distribution for an actual
airfoil. If the initial distribution has been well chosen,
however, the changes will be minor.
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THE CHOKING OF CASCADES

In the compressible adiabatic flow of a fluid in an elemen-
tary stream tube of varying area 4, the mass flow must be
constant so that the logarithmic derivative

c_zﬂerx ,+d31:

must vanish. Now the density p; and the velocity 17 are
related to the pressure p, by Bernoulli’s equation.

—V,dV,

sz dpzxdm

dpz P

The quantity dp./dp: is, of course, the square of the velocity
of sound so that Bernoulli’s equation may be written

dp, VAV, v,
E__ ar —ap =M Ve

where Af; is the local Mach number. Combining this
expression with that of the Jogarithmic derivative then

dt Vi d(l;
(1—=M7) -,

From this relation it is seen that for a subsonic flow the
area must decrease for a velocity increase, while at supersonic
speeds the area must increase for a veloeity increase. When
the Mach number is unity, then dA4=0, so that sound speed
is only attained where the area is & minimum.

Considering the flow through the cascade of figure 1 as
essentially unidimensional, then it is apparent that if the
flow past the plane &b attains sonic speed, the mass flow
through the cascade cannot be further increased and the
cascade flow may be said to be “choked.” Of course, the
flow through a cascade is not unidimensional, but experi-
ence with the similar phenomena of choking in wind tunnels
has indicated that the assumption of unidimensionality of
flow yields calculated choking Mach numbers in good agree-
ment with experiment.

For a unidimensional flow it is shown in reference 3 that
the ratio of the free area of the undisturbed stream A to the
minimum flow area A, is related to the choking Mach
number of the free stream A7, by

' o I _ B
2(y—1) .
2= [+ G- | (55)

For the approaching stream which will pass between any two
airfoils of the cascades the free cross-sectional area is

A=g cos o’
while the minimum area between the two airfoils is

t
Anmg—tmg (1-1)
g g g

and hence

%=cos otz (56)
m ] — .
g

where t is the maximum thickness of an airfoil.
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Properly the thickness of the boundary layers on each
surface of the airfoil should be added to the geometric
thickness to obtain an effective thickness f,. Using this
value with equations (55) and (56) and a value of v (for air)
of 1.4 then

’
tf:l— ;}fch CoS « .

) 6D
6

A practical estimate of the choking Mach number may be
found by assuming the angle of attack to be so small that
cos o' 22 1 and that the effective thickness is the geometric
thickness. With these assumptions, values of the thickness/
gap ratio as a function of the choking Mach number are
given in figure 3.

.3

/

7

Ratio of airfoil thickness to cascade gap, t/g
=

AN

N

\\

g rLa

¥ 7 s
Chok ing Moch number, M,

FIGURE 3.—Choking Mach number as a function of the ratio of airfoil thickmess to
cascade gap.

It is shown in reference 3 that there exists another pos-
sibility that choking may occur in the wake of the airfoils
for very thin profiles as the result of the action of viscosity.
In most cases this type of choking will not be of practical
importance.

]
O

DISCUSSION

In order to check the accuracy of the equations which have
been developed, pressure distributions for incompressible
flow have been calculated at three lift coefficients for an un-
staggered cascade of NACA 4412 airfoils. These cases were

chosen to permit comparison with those which have been
determined in reference 11 by the method of conformal
transformation. The chord/gap ratio in all cases is 1.03
and the lift coefficients considered are 0, 0.5, and 1.0. This
comparison subjects the approximate theory of this report
to a rather severe test, since the analysis has been developed
on the basis of a small chord/gap ratio. The comparison
with reference 11 indicates the agreement is good as may be
seen in figures 4, 5, and 6. The single-airfoil pressure
distributions, as obtained by conformal transformation in
reference 11, are shown in the figures for the same lift
coefficients as for the cascade airfoils. (In Appendix C
the calculations to obtain the pressure distribution of figure

-3
Cascade airfoi by methad of fthis report
 m--m-- Cascade airfoil by method of reference [l ]
—-—/tone airfoil{from reference /)
_2ia
< [l
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FIGURE 4.—Pressure distribution for NACA 4412 airfoil alone and in cascade for §=1.03 and
e'=0.
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-3
Cascode airroil by method of this report
——~~-~- Cascade airfoil by method of reference H—
—-—Lone airfoil (from reference i)
-2

FPressure coefficient, By & P,
'
L

/

1] 20 <0 T 80 100
Chordwise srtarion, percent ¢

FIGURE 5.—Pressure distrubution for NACA 4212 airfoil alone and in eascade for §=1.@3 and
cr'=0.5.

6 are given in detail. Table II gives all the necessary com-
putations and serves to demonstrate the simplicity of the
method.) It is evident from the figures that one cffect of
cascading airfoils is to impose a ‘negative camber in-
fluence” on the pressure distributions as the Iift coefficient is
increased. Accordingly, for airfoils for use in cascade the
camber must be exaggerated if a certain desired camber
effect on the pressure distribution is to be obtained. It is
of interest to note that the calculated angles of attack are
also in reasonably good agreement as may be seen in the
following tabulation:

Alirfoil in caseade Alrfoil alone
¢ ' i =
af (from ref- | &’ {method of
erence 11) report} «
o] —5. 9° " —6.0° —4. 3°
.5 +1. 8° +2.3° —.1°
1.0 +9.7° +10. 4° +4. 0°

-3

——— Cascade girfoil by method of this report
--=-= Cascade oirfoil by method of reference (| —
—-— Lone agirfoil (from reference /)
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FIGURE 6.—Pressure distribution for NACA 4412 airfoil alone and In cascade fur — 1.03 and
c’'=1.0

Unfortunately no pressure distributions over unstaggered
cascades at high airspeeds could be found so that the validity
of the compressibility corrections developed in this report
could not be determined. They have been developed, how-
ever, in much the same way as the compressibility correetions
of reference 3, which have been found to be in good agree-
ment with experiment. It is clear, however, that as the
Mach number is increased the accuracy of the caleulations
will diminish unless the chord/gap ratio is simultancously
decreased. This will be particularly true as the choking
Mach number is approached.

One matter of interest concerns the effect of compressi-
bility on the lift-curve slope of a cascade of NACA 4412
airfoils having chord/gap ratios of 0 (i. e., lone airfoil), 0.5,
and 1.0 which is shown in figure 7. It is seen that the
importance of the interference effects of the airfoils in cas-
cade increase so rapidly with Mach number that, contrary
to the usual expectation, a decrease in lift-curve slope with
Mach number is indicated for high solidities.

An examination of the equations for the choking of cas-
cades indicates that care must be exercised with an unstag-
gered cascade to keep the airfoil thickness small for high
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FiouRE 7.—Effect of compressibility on lifi~curve slope for NAC A #412 airfoil in ezscade.
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solidities if relatively high free-stream Mach numbers are
employed. Even for the cascade considered in figures 4, 5,
and 6, for esample, the choking Mach number as obtained

from figure 3 is only.about 0.64 based on the geometric

thickness of the airfoils.

The existence of a boundary layer on the airfoil surfaces
would, of course, increase the effective thickness which would
reduce the choking Mach number. VWhen the pressure
gradients are strongly adverse, as in the case of the airfoil
of figure 6, the boundary-layer growth will be increased and
its effect on the choking Mach number will be more pro-
nounced. The proper choice of camber consistent with the
design lift will serve to reduce the sharp pressure peak,
thereby improving the critical as well as the choking Mach
number.

AxES AERONAUTICAL LABORATORY, »
NATIONAL Apvisory COMMITTEE FOR AERONATTICS,
AMorrerr Fieup, Canir., September, 1947.



APPENDIX A

LIST OF SYMBOLS

The following symbols are used through this report:

M
ﬂ’j ch

TR g O

Av

1%

Ye
Y.

veloecity of sound

Fourier coefficients (See equation (7).)

Fourier coefficients (See equation (B14).)

airfoil chord

section lift coefficient

section quarter-chord-moment coefficient

distance perpendicular to chord between airfoils in
cascade

total head

lift per unit span

Mach number

choking Mach number

static pressure

without subscript, local lift at any chord station in
coefficient form; with subscript, local pressure co-
eficient (Sce cquation (38).)

dynamic pressure

source strength

radial distance in polar coordinates

local pressure coefficient (See equation (38).)

maximum airfoil thickness

absolute temperature

horizontal component of velocity

vertical component of velocity

total induced wvertical velocity at the airfoil under
consideration due to the other airfoils in the cas-
cade

velocity

coordinate of points on chord line as measured from
leading edge

ordinate of mean camber line

ordinate of base profile

angle of attack
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Y

r
3
1
8

-~

@ cs‘-k.qt..(c--

ratio of specific heat at constant pressure to specifie
heat at constant volume (¢,/c,)

circulation per unit span ,

compressibility correction factor (I —‘%

compressibility factor (Sce equation (39) and fig. 2.)

angular coordinate of points on chord line (Sce
equation (7).)

compressibility correction factor (4/1—A37%)

factor depending upon shape of base profile (Sce
equation (B20) and table 1.)

compressibility correction factor <1 -!—1? M 2)

mass density

62
-

2
factor depending upon solidity of cascade (Zg g>

inclination of the radius r to a line normal to the air-
foil chord (See fig. 1.)

 polar angle in polar coordinates (positive counter-

clockwise)
SUPERSCRIPTS

used to distinguish properties of cascade airfoil

denotes cascade airfoil characteristics as cocfficients
referred to dynamic pressure of incident stream at
center of pressure

SUBSCRIPTS

denotes values in stream far ahead of cascade (except
when used to indicate & numbered Fourier coeflicient)

denotes local conditions at point in fluid

denotes values on lower surface of airfoil

denotes values on upper surface of airfoil

refers to base profile

denotes a velocity induced by a vortex

denotes a velocity induced by a source or sink



APPENDIX B

VELOCITY COMPONENTS INDUCED BY AIRFGILS IN CASCADE

For incompressible flow over a single airfoil, the vertical
velocity (perpendicular to the chord) induced at the point on
the chord z, by its own vorticity distribution is

1 Es

0’., n L—Xy

(B1)

=

To obtain the velocity for compressible flow, the factor

1—3r72 .
[ s’ ® (B2)
must be applied to the right-hand side of equation (B1) as
is shown in reference 9. Here 1/ is the Mach number of the
undisturbed stream and @ is the angle between the stream
direction and a line drawn from the vortex to the point in
question. For a single airfoil @ is always close to 0° or 180°
and the induced velocity in a compressible stream is ap-
proximately

dr dr
1—32 °Ed A dxd
p= (B3)
22 Yo — 2;. 0 I—To
where .
A=+1—11% (B4)

Equation (B3) can be integrated by substituting for dT/dx
and for x the following:

‘g 977 ( 4, cot e—i—}__‘,A sin ne) )

:r=% (1—cos ) (7)
The details of the infegration are given in reference 2, page 4.
The resulting expression is

T7=)\ (\—AQTE‘-&R cos nﬁ) (B5)
The vertical velocity at a point on the chord of an airfoil
in cascade is made up of three parts. These are (1) the
velocity »” induced by its own vortices, (2) the velocity As,
induced by the vortices of the remaining airfoils of the
cascade, and (3) the veloeity Ay, induced by the sources and
sinks of the remaining airfoils.
By analogy with equation (B5):
" @
-‘V=)\ (—Ao’—{—ZA," cos ne) (B6)
'~ n=1
The vertical velocity induced by the vorticity distribution
of the other airfoils is given by the expression

17es d sin 7 V1312 ;
Av= . 1f <1—112 cos® 7 )dr (B7)

The sumimation is over the remaining airfoils of the cascade.
The angle r is measured clockwise between the vertical and

a line from the vortex to the point in question, as indicated
in figure 1. The factor in parentheses is that necessary to
give the correct result for compressible flow. It is derived
from the factor (B2) with use of the relation sin ®= —cos =
Since rp=(mg/cos ) and tan r,= (x—xg)/mg so that

r—a:o

G
Vo)

the preceding equation may be written

Sin

and

COS Tip=—

r—xg
mg

=

Expanding the term in brackets in a power series in (z—ug)
[mg, neglecting terms involving the cube and higher powers,
and noting that

Az¥,=} § dr’ldx

T m=1J0 mg

dr (BS)

o 1 ,[1,2
Zl m: 6
there is obtained
dl”
Ap,= (:r —xo)ydx (B9)

If equations (6) and (7) are substituted into equation (B9)
and the indicated integration is performed,’ there is finally
obtained

‘%’_—2 [(Aﬂur A)— (24, + A7) cos 8] (B10)

where

[
e
&l
q‘=|v3| c?@

(B11)

It is interesting to note that equation (B10) can be more
directly obtained by replacing each of the airfoils of the
cascade by a single vortex.
derivation is the proper chordwise location of this vortex at
the airfoil center of pressure.

In a manner similar to that in which equation (B10) was
obtained it is possible to show that neglecting terms involving
(@—xo)/mg to the third and'hiéher powers,

The important point in such a

Ay ‘
v =0 B12)

In Appendix B of reference 3 the velocity components in-
duced by a source at the origin are given as follows: The
velocity component perpendicular to the stream Ag; is

Q [v¥1—=4AL (sin @)
2ar| 1—Af*sin’d

o
(s
—
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and the induced velocity component parallel to the stream
Ay, 18

cos @
erl:\/l—ﬂﬁ (1—AL? sin? q:):l

where ¢ is the mass flow divided by the free-stream density.

The vertical Velocity induced by the source-sink distribu-
tions of the remaining airfoils of the cascade can then be
expressed as

__1mea fedQjde | z—f\1~(cos7m):|

and the eorresponding horizontal induced velocity is, after
noting that cos $=—sin r,

_imzs fedQfda sin 7, :I
Avs=—o g:%fo Tm [\fi'—ﬂ;ﬂ(l—M?coszl‘m) &

{0

where Ir

dx is the source strength over an element of chord

dx of the cascade airfoil. Substituting for r,, and cos r,, and
sin 7, as before, expanding, and neglecting the third and
higher power of (x— ) /mg, there is obtained

Avy=0

d 4
_(_3%52. ) dQ:r (x—xy) dz

B13)
Atty=

dQ’

The source-sink distribution ar is now expressed by the

following series:

B14)

ddg.=2V(Bo’ cot % 9—{-;2:{3”’ sin n6)

On substitution of equation (B14) the integral in equation
(B13) can be evaluated, obtaining, analagously with equa-
tions (B10) and (B12}:

A{; =0 (B15).
and
M= 201By +4 B)— 2B/ +-BY) cos ] (B16)
Since the airfoil must be a closed figure, it follows that
(ZQI dx=0 B17)

By substitution of equation (B14} in equation (B17), there is
obtained

2By +B/=0 (B18)

so that

A ;
T%; }\3(2B0 +BQ )
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From thin airfoil theory (reference 2) it can be shown that

ATGE

where ¥, is the ordinate of the base profile as measured from
the axis of symmetry in terms of the airfoil chord at the cor-
responding x station.

In the problem of determining the wall interference in a
two-dimensional wind tunnel, an evaluation of the influence
of the image base profiles yiclds an identical result if the
limitations of thin airfoil theory are presumed. Lock (dis-
cussed in reference 3) has evaluated the image base profile
effects as regards wall interference in the incompressible case
for profiles not necessarily thin and has found that (in the
notation of this report)

-2 W [T om

is & more preecige value to replace 2B, +B,’, where Py, is the
base-profile pressure coefficient in incompressible flow,
Values of A computed by equation (B20) for various airfoils
are given in table I which was taken from reference 3.
Accordingly, as in reference 3, this value is used in this report
so that the veloeity increment due to the effect of sources and
sinks becomes

2B,/ + B,/ = B19)

%Jﬂ ®21)
It should be noted that properly Lock’s result for incom-
pressible flow is

A{;“’~—Aa (B22)
However, the expression for 17 is
V=V+Au
so it follows that
- Aﬁf
Thus for incompressible flow
é;,fi=;\a' <l ——A{Lf> B23)

which to the first order in ¢ is still equation (B22) so that
equation (B21) for compressible flow follows. From equa-
tions (B12) and (B21) it is clear that the influence at the
position of one airfoll of the cascade due to all other airfoils
of the cascade is simply that promoted by the source-sink
system

Au_ Ao

-V=—X§ '}324)
Moreover, because Av, (equation (B13))} is zero, it follows
from equation (B10)

Av '
_T/l;= -2 ;—‘; ([.[0,‘*"}12 .[12’)— (2A0’+A1,) cos 9]



APPENDIX C

SAMPLE PRESSURE-DISTRIBUTION CALCULATION

Table I gives all the necessary calculations to arrive at the
cascade pressure distribution shown in figure 6. It was
desired to obtain the pressure distribution for a cascade of
NACA 4412 airfoils given the values ¢,/=1.0 and ¢/g=1.03
for comparison with the distribution caleulated by the method
of conformal transformation given in reference 11.

Since the assumed flow is incompressible, then A, g, and &
are unity and 5 and 5” are zero. From table I, A is 0.237.
The parameter o is 0.220. The lift coefficient for the
corresponding airfoil in free air is obtained from equation
(48} as 1.335. By potential theory, for the NACA 4412

airfoil the free-air angle of attack for ¢,=1.335 is 6.8° and
Cmyye is —0.11 so that for the airfoil in cascade, by equation
(22), o’ =10.4°. o

Values of the pressure coefficient for the isolated airfoil
were calculated from the free-air values of reference 11 using
the method of reference 5.
determined and the P* was obtained from equation (24).
P* and 1—P,* (equal to 1—P;) were then combined by
equations (43) to give 1—Py* and 1—FPr*.
pressure distribution was finally obtained using equations
(44).

TABLE I.—VALUES OF A FOR VARIQUS BASE PROFILES

i
* P’! i
g <% .
3 = zZ N .
) = o8 NACA LOW-DRAG SECTIONS
> 7 g
o S5 | e
B . 2 | 23 )
¢ 2 g o B
¥ E i ssil o w | o8 | oH v low | x| oxr
1 =] ] M T 14 4 L L L
P = [l Za A b4 e ad o [l el
z = B Q S o S c c c o
/ e 2 o 8%} & L j 1 L L L
ik &~ B = o < = 2 < < g <
0.06 | ... | 0127 | _.___ 0.124 0.106
00 | 0236 | .196 | 0.155 189 1158
12 30 | lese [ .22 2263 215
(15 103 | ‘35 | em 2341 216
18 403 | a5 | 337 LTl 1338
“21 580 | L5083 | odod T511 Jig2
i35 5 ~625 197 “631 187
30 e6e | om0 | otees | oo | b ITD T -
'35 | rose | lsas | wer o LD | DD DIy T oIz
o | vew | wvan | vess | D | DDy IITV TToob DoV IDT| Dbt o
Yoo | gooo | 4o00 | .. | DD | I} IIIob I o -

TABLE II.—CALCULATION OF CASCADE

PRESSURE DISTRIBUTION OF FIGURE 6 (SEE APPENDIX C)

[e=0.220; A=0.237]

® @ @ @ @ @ ® @ @ @ @ @
i
[
i
e - -
i) ~ —~
Station Py Pr \rl S & | e, @
I 1 i@ | el = =
i =) + [ < < -
@ ~ 5 e @ ® ‘D g g 2 =
[ b, < ! ~ = ) & K3
@ = g Q@ [ 1 3 3 ¥ X
3 P e : B ~ ] =
& k) =1 & 5 @ a @ g N
0.025 —2.4 0.5% 3.33 1.19 0.23 3.12 3.26 0.14 3.60 0.16 —2.60 0. %ﬁ -
.05 —2.17 .63 2.85 1.37 .33 2.52 2.62 .40 3.23 44 —2.23 .56
.1 —1.57 .50 2.37 1.44 .45 1.92 2.56 64 2.83 o —1.83 .29
.15 —1.69 .44 2.13 1.43 83 159 2.34 .74 2.58 .82 —1.58 .18
.2 —1.5 -39 194 141 .60 1.34 2.16 .82 2.39 .90 ~1.39 .10
.3 —1.32 .35 1.67 1.35 .68 .49 1.89 .90 2.09 1.00 109 [
.4 —1.12 .33 1.45 1.30 .73 .72 1.68 .96 1. 86 1.06 —. 86 —.06
.8 —. 92 .29 L21 1.24 75 .45 1.48 1.02 1.64 1.13 —. 64 —.Ig
6 —. 74 27 Lol 1.18 .73 .28 1.32 1.04 1.46 1.15 —.4 —.15
.7 —.5 .26 .82 L1l .63 .14 1.18 1.04 1.30 1.15 —.30 —.15
.8 —.38 26 .61 1.03 .60 04 1.06 1.0 1.17 1.12 -7 | —12
.9 —. 16 .24 .41 .95 .45 —.04 .93 .97 1.03 1.07 —.03 —. 07
1.0 100 1.00 [i] 0 [ a a a 0 [+ 1.00 1.00
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The cascade )

From these pressures P was
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